
Title: Transfer Learning between Control Tasks using Reinforcement Learning

G009 (s1876926, s0908445, s1873615)

Abstract

In this paper we test the state-of-the-art reinforce-
ment learning algorithm Proximal Policy Optimi-
sation (PPO) in the robotic control domain for
their ability to transfer between similar, albeit
different, tasks. We will use OpenAI’s Bipedal
walker’s two environments; with the aim to re-
duce training times and improve performance
comparative to training from scratch for both
tasks. Our experiments show that weight sharing
with all layers transferred can increase the initial
level of performance - when transferring to both
more complex or simpler tasks. We also show
that training on multiple tasks can significantly
increase performance on complex environments.
These results show us that similar methods could
be used to prepare an agent for very complex task
by training on a simpler task. Thus, speeding
up learning of a complex task and increasing the
performance level.

1. Introduction
Reinforcement learning (RL) involves training an agent
through punishment and reward without the need to specify
exactly how the agent should approach the task Kaelbling
et al. (1996). RL has achieved a high success in various
challenges with a vast amount of research going into differ-
ent algorithms and training techniques.

One field RL has been very successful in is in learning com-
plex behaviours in robotic control. Robotic control tasks
are notably difficult because of the controllers requirements
to perform in high dimensional state spaces, deal with un-
certainties and function on unseen instances (Kalashnikov
et al., 2018). Tasks like walking or manipulating objects
in ones hand have a large number of applications and are
therefore important tasks to solve.

However, experimenting with robots in the real world is
also an expensive and time consuming task which has led
many researchers to train and test on simulated robotic
environments. The amount of research on reinforcement
learning and simulated robitics has led a number of com-
panies to provide pre-built environments for running such
experiments. Mujoco1 and OpenAI both provide test en-
vironments for simulated robots, from 2D walkers to 3D
hands. Algorithms such as DDPG, DQN and HER have all

1http://www.mujoco.org

been applied to the above problems2 but recently Proximal
Policy Optimisation (PPO) has emerged as the state of the
art on tasks such as a 2D walker Zhang & Zaiane (2017).
However, this algorithm still struggles to achieve a high
reward on more complex tasks and we therefore aim to
explore techniques to bridge the performance gap between
simple and more complex tasks.

Transfer Learning (TL) offers researchers a paradigm to
generalise to new scenarios with minimal training whilst
enhancing performance. It will be an important research
direction if we’re going to see machines exhibit general
intelligence and be able to learn a myriad of different tasks
previously not countered. TL has previously been used to
transfer policies trained in a simulated environment into a
real robot, bridging the simulation-reality gap. TL has also
been used to transfer policies for the same task between
a 3 degrees-of-freedom argm and a 4 degrees-of-freedom
arm (Kojcev et al., 2018). Outside the study of robotics,
transfer learning has been used to transfer knowledge from
source tasks to target tasks using Atari games successfully,
they used a single DQN source network trained upon mul-
tiple games which could then transfer to other Atari tasks
(Parisotto et al., 2015).

However, despite the promising results from new RL algo-
rithms on continuous control tasks, TL is yet to have been
used to transfer RL policies between different tasks. The
ability for a simulated robot to transfer between different
tasks will make real robots attempting new tasks safer and
faster to reach a level of performance more effective for
real world usage.

Therefore, in this paper we aim to find a form of transfer
learning that improves the performance of an RL agent on
the given tasks. To do this we will use the Proximal Policy
Optimisation (PPO) algorithm Schulman et al. (2017) on
OpenAI’s Bipedal walker and Bipedal Walker Hardcore
environments. We will explore methods of transfer learning
such as weight sharing Tirinzoni et al. (2018) and multi-
task learning Parisotto et al. (2015), to asses their abilities
to improve an agent’s performance.

Our experiments found that weight sharing could increase
the initial reward but would struggle to significantly in-
crease the maximum reward achieved by the more complex
environments. However, multi-task learning - training an
agent on alternating different tasks - achieved a signifi-
cant improvement in the more complex tasks. We believe
this could be because in more complex tasks, they’re less

2http://gym.openai.com

http://www.mujoco.org
http://gym.openai.com


MLP Coursework 2 (s1876926, s0908445, s1873615)

predictable and the multi-task training helps the agent gen-
eralise better.

In the next section we will discuss the task, algorithm and
environments in detail. From there we will discuss our
methodology, including definitions of reinforcement and
transfer learning. We will then discuss our experiments
setup and results followed by a brief mention of related
work. We will then conclude with a summary of our results
and findings followed by a mention of potential future areas
of research.

It should be noted that our report differs considerably to
our previous report, Coursework 3, where we outlined an
approach for transferring between OpenAI’s robot dexterity
tasks with a focus on reducing long training times found
in using RL in robot control. This is because of technical
difficulties installing Mujoco on the MLP Cluster and the
time constraints at hand. We considered other robotics
environments such as RoboSchool but without success, so
we have focused on the Box2d environments which are
the closest to a robots control problem with its rigid body
physics and dynamics (Catto, 2013). Our previous proposal
can stand as a direction of future work.

2. Task and data
In order to research transfer learning between environ-
ments, we needed to use continuous control environments
with similar action spaces and inputs. These environments
must also be comparable to more complex robotic simu-
lation tasks, such as the Mujoco dexterity environments,
in order for the results to be applicable to a wider set of
problems. We therefore used the BipedalWalker-v2 and
BipedalWalkerHardcore-v2 environments of OpenAI Gym
3 which are based on Box2D physics engine4.

The first environment is the BipedalWalker-v2 where the
agent needs to travel across small random variations of a flat
terrain as in figure 2(a). The second one is more challenging
which is BipedalWalkerHardcore-v2. The agent is required
to navigate across an environment of randomly generated
terrain within a time limit, without falling over (figure 1(b)).
The BipedalWalker character has 4 degrees of freedom,
2 hip and knee joints as shown in figure1(b). In both the
environments, the state consists of hull angle speed, angular
velocity, horizontal speed, vertical speed, position of joints
and joints angular speed, legs contact with ground, and 10
lidar rangefinder measurements. There are no coordinates
in the state vector.

Reward is given for moving forward to a total of 300+

points up to the far end. If the robot falls, it gets -100.
Applying motor torque costs a small amount of points and
so the more optimal the agent, the higher the score. (Ha
(2018))

These environments provide a continuous control task on a

3http://gym.openai.com
4https://gym.openai.com/envs/#box2d

Figure 1. BipedalWalkerHardcore Figure 2. BipedalWalker

simulated robot, within a simulated physics environment.
These environments are therefore comparable to more com-
plex robotic simulation environments but provide a less
computationally intensive environment in which to perform
our research.

OpenAI Gym also provides a toolkit for developing and
comparing reinforcement learning algorithms scientifically
(Brockman et al. (2016)), including PPO, DDPG, DQN and
TRPO5.

Using the above environments, our task is to simulate an
agent using PPO2 (Schulman et al. (2017)) before com-
paring the results to the performance of models that have
been pre-trained. Pretraining our networks will involve a
number of different weight sharing techniques, as well as a
form of multi-task learning where we will train our agent
on multiple tasks simultaneously.

We will measure the success of our model by using the
episode reward mean (ERM). This is the mean reward the
agent achieved over each episode in an update. To evaluate
our implementations we will look at the zero shot perfor-
mance (or initial skill level) after transferring the weights
to the new task environment and the rate of improvement of
the reward, which we hope will be higher than our bench-
marks. Finally, we will look at the maximum mean reward
per episode of our models to evaluate the level of their best
performance

3. Methodology
3.1. Reinforcement Learning

Our environment will be a Markov Decision Process rep-
resented by a tuple M = (S,A, ,T, R,S0, γ), where S is a
state space,A is the action space, p(st+1|st, at) is the transi-
tion probabilities over the transition space T, R is a reward
function r : S ×A −→ R, S0 is the initial state distribution,
and γ ∈ [0, 1) the discount factor.

A deterministic policy is a mapping from states to actions
π : S −→ A. Every episode starts with sampling an initial
state s0. At every time step t the agent produces an action
based on the current state at = π(st). Then it gets the reward
rt = r(st, at) and the environment’s new state is sampled
from the distribution p(·|st, at). A discounted sum of future
rewards is called the return Rt =

∑+∞
i=t γ

t−iri. The agent’s
goal is to maximise its expected return Es0 [R0|s0]. The Q-
function or action-value function under a policy π is defined

5https://github.com/openai/baselines

 http://gym.openai.com
 https://gym.openai.com/envs/##box2d 
https://github.com/openai/baselines


MLP Coursework 2 (s1876926, s0908445, s1873615)

as Qπ(st, at) = E[Rt |st, at].

Let π∗ denote an optimal policy i.e. any policy π∗ s.t.
Qπ∗(s, a) ≥ Qπ(s, a) for every s ∈ S, a ∈ A and any policy
π. All optimal policies have the same Q-function which is
called the optimal Q-function and denoted Q∗. It is easy to
show that it satisfies the Bellman equation:

Q∗(s, a) = Es′∼p(·|s,a)[r(s, a) + γmax
a′∈A

Q∗(s′, a′)] (1)

3.2. PPO2

The Proximal Policy Optimization algorithm performs com-
parably or better than state-of-the-art approaches while be-
ing much simpler to implement and tune. PPO has become
the default reinforcement learning algorithm at OpenAI be-
cause of it’s ease of use and good performance Dhariwal &
Wu (2017). PPO adds a soft constraint that can be optimized
by a first-order optimizer. The agent may make some bad
decisions once in a while but it strikes a good balance on
the speed of the optimization. Experimental results prove
that this kind of balance achieves the best performance with
the most simplicity Schulman et al. (2017).

The Proximal Policy Optimization algorithm combines
ideas from A2C (having multiple workers) and TRPO (it
uses a trust region to improve the actor). The main idea is
that after an update, the new policy should be not too far
form the old policy. For that, PPO uses clipping to avoid
too large update Hill et al. (2018). The PPO2 formula as
purposed by Schulman et al. (2017) is the following:

LCLIP(θ) = Êt[min(rt(θ) Ât, clip(rt(θ), 1− ε, 1 + ε) Ât] (2)

Where epsilon is a hyper-parameter, say, ε = 0.2 The moti-
vation for this objective is as follows. The first term inside
the min is LCLIP. The second term, clip(rt(θ), 1− ε, 1+ ε)Ât,
modifies the surrogate objective by clipping the probability
ratio, which removes the incentive for moving rt outside of
the interval [1 − θ, 1 + θ] Finally, we take the minimum of
the clipped and unclipped objective, so the final objective
is a lower bound on the unclipped objective. Consequently,
we have two cases to consider as shown in figure 3.

Figure 3. Plots showing one term of the surrogate function LCLIP

as a function of the probability ratio rt, for positive advan-
tages(Case 1) on left and negative advantages(case 2) on the
right. The red circle on each plot shows the starting point for
the optimization,i.e..., r = 1. Note that LCLIP sums many of these
terms.

The first case is when the advantage is > 0. If Ât > 0, it
means that the action is better than the average of all the
actions in that state. Therefore, we should encourage our
new policy to increase the probability of taking that action
at that state. Consequently, it means increasing rt, because
we increase the probability at new policy (because At * new
policy) and the denominator old policy stays constant. The
second case is when the advantage is < 0. If Ât < 0, the
action should be discouraged because negative effect of
the outcome. Consequently, rt will be decreased (because
action is less probable for current policy than for the old
one) but because of the clip, rt will only decreases to as
little as 1 − θ (Schulman et al. (2017)).

3.3. Transfer learning

The idea behind transfer learning is you can use a previ-
ously trained network to transfer to a similar, but different,
task - improving the generalisation in the new setting. Re-
sults have shown that they can be effective at speeding up
learning when transferring to related but distinct RL tasks
(Konidaris & Barto, 2006). Which is especially a prevalent
concern of the robot learning community where training
times of reinforcement learning have taken several months
(Kalashnikov et al., 2018). We can formally define transfer
learning in Definition 3.1.

Definition 3.1 (Transfer Learning) Given a source do-
main DS and learning task TS , a target domain DT and
learning task TT , transfer learning aims to help improve
the learning of the target predictive function fT (·) in DT

using the knowledge in DS and TS , where DS , DT and
TS , TD.

In our case, our source domain will be one of
BipedalWalker-v2 and BipedalWalkerHardcore-v2 and we
will be transferring to the other. From the simpler task to
the more complex task and vice versa.

If we were to train two seperate networks for two similar
tasks there would be a sharing between the weights of the
lower levels. Rather than train a full network independently,
we can take the weights from the first task, transfer them to
a new network and train just the last layers to generalise to
the new task. This approach to transfer learning is called
weight sharing, and we will be investigating its utility in
our experiments.

Another method is to train on multiple different envi-
ronments and to then to transfer to another environment
(Ciosek & Whiteson, 2017). Which has been shown exper-
imentally to learn better and faster than a policy gradient
baseline. We will be alternating between Bipedal Walker
and Bipedal Walker Hardcore and then testing on both
environments.

From a successful implementation of transfer learning you
can expect to see:

• The initial skill (before refining the second network)
on the second task is higher than it otherwise would



MLP Coursework 2 (s1876926, s0908445, s1873615)

be.

• The rate of improvement of skill during training of the
second task is higher than it otherwise would be.

• The skill level of the secondary trained model after
converging is greater than it otherwise would be.

4. Experiments
4.1. Baseline experiments

The aim of our experiments were to investigate the potential
benefits of transfer learning between tasks. Does transfer-
ring speed up the learning in the second task? How does
it affect the initial skill? We also want to investigate the
effects of transferring to a simpler task (Bipedal→ Bipedal
Hardcore) and vise versa.

To analyse the effects we started out investigating how
tasks independently trained to find a baseline for both the
Bipedal and the Bipedal Hardcore environment. Providing
a comparison to test the utility of our hypotheses.

To do this we used the PPO algorithm discussed above on
both the Bipedal Walker and the Bipedal Walker Hardcore
using the OpenAI baseline PPO2 model 6 using the ’MLP’
architecture consisting of 2 hidden layers of 64 units and a
Tanh activation unit.

Simulations are inherently deterministic with their seed
numbers being the only element of randomness and un-
certainty. If the seed number is unchanged, with enough
training time, the model will memorise the random patterns
making the learn policy brittle as it over fits (Zhang et al.,
2018). To ensure our models didn’t exhibit over fitting,
which could possibly diminish performance once trans-
ferred to a new task, we aimed to sample the seed numbers
from a sample size of 10. Unfortunately, after having tech-
nical difficulties with our installation on the MLP Cluster
and having to change our project there wasn’t enough time
to do so. Nevertheless, we would like to do this in future
work averaging over a number of seed numbers would in-
crease the reliability of our findings and prevent over fitting
to subtleties in an inherently deterministic environment.

Due to the large number of hyper-parameters and the com-
plexity in both tasks a thorough hyper-parameter grid search
is beyond realistic under the time and computing resource
constraints. For both the value function and policy function
we used the Adam optimiser (Kingma & Ba, 2014). The
following paper was our guide for hyper-parameter setting
as they used PPO with the Walker2D environment very sim-
ilar to Bipedal walker and achieved state of the art results
(Schulman et al., 2017). In our experiments we used the
hyper-parameters in Table 1. Our weights were initialised
to 0.003 multiplied by a normalized uniform distribution.

Our results show that both walkers begin with mean reward
of roughly -100 however, the Bipedal Walker converges to
a maximal episodic mean reward score of 300. See Figure

6https://github.com/openai/baselines/ppo2

Hyper-parameter Value
Learning rate 0.001
Discounting Factor 0.99
Batches per Update 64
Clipping (ε) 0.2
Total Timesteps 10,000,000
Steps per Update 2048
Epochs per Update 10
Discount (γ) 0.99
GAE parameter (λ) 0.95

Table 1. Hyper-parameter settings.

4. The Bipedal Walker Hardcore seen in Figure 4 cannot
achieve a score greater than -40 after its training. Our hope
is that transferring the weights will increase this score in a
shorter training time.

Figure 4. Baseline for normal Bipedal Walker. Showing episodic
mean reward by n updates.

Figure 5. Baseline for hardcore Bipedal Walker. Showing episodic
mean reward by n updates.

Our interpretation from the baselines is that there is a large
scope for the Bipedal Hardcore environment to see benefits
from our transfer learning approaches. Especially in the
first 150 updates where the performance dips below the
randomly initialised weights performance. As well as the



MLP Coursework 2 (s1876926, s0908445, s1873615)

overall hardcore performance since doesn’t exceed a reward
of -40. This suggests that the hardcore environment is too
complex a task for the agent to learn from scratch.

4.2. Weight Sharing

The aim of these experiments was to see if transferring the
weights to the more complex tasks would help performance
and to see if simpler environments could be made more
robust using the weights transferred from a more complex
environment.

All the hypermeters were the same as the baseline exper-
iment run for a total timesteps of 10 million for all the
weight sharing experiments.

We verified our implementation of transferring weights by
transferring previous learnt weights in Bipedal Walker back
to Bipedal Walker to check the ERM continued to have
a performance near to 300. Our experiment verified our
transfer learning worked albeit the ERM didn’t converge
as in the Bipedal Walker baseline. We suspect this might
to do with the Adam Optimiser hyper-parameters, after the
transfer, the learning rate would have been increased back
to a large value making the policy jump to a less optimal
value.

4.2.1. Weight sharing: 1st layer

First, We wanted to know what conditions transfer learning
via weight sharing is most effective. This meant experiment-
ing with the number of layers we transfer, and what weights
we train thereafter. We tried transferring the weights of
only the first layer between the environments. In the first
experiment, we started by sharing the first layer weights
of BipedalWalkerHardcore to the BipedalWalker environ-
ment. The second experiment, we transferred the first layer
weight of BipedalWalker to the BipedalWalkerHardcore
environment.

The findings of the both experiments can be seen in figure
6 for the BipedalWalker and figure 7 for the BipedalWalk-
erHardcore. These results show us that the performance
was almost the same as the performance of the baseline
with a slight improvement. For the BipedalWalker, the first
110 updates achieved an ERM that was slightly higher than
the baseline, with a difference of almost 60 ERM. While
for the BipedalWalkerHardcore, a marginally higher ERM
was seen in the first 200 updates for the environment in
comparison to the baseline.

These results confirm that only transferring the first layer
does not transfer enough information to the agent for it
to initialise or learn well. We therefore needed to transfer
more information to the agent.

Figure 6. Comparison for Bipedal environment between baseline
and 1st layer transfer.

Figure 7. Comparison for Bipedal Hardcore environment between
baseline and 1st layer transfer.

4.2.2. Weight sharing: all layers with 1st layer locked

We then experimented with transferring all the weights
but locked the 1st layer weights, so they remained un-
changed throughout training. In the first experiment we
transferred the weight of BipedalWalkerHardcore to the
BipedalWalker environment. Next, we shared the weights
of BipedalWalker to the BipedalWalkerHardcore environ-
ment. For the first experiment, we can see the graph 8
shows us the comparison of this weight sharing model with
the baseline. We can see immediately that the training time
was shorter, with the model’s performance starting at 180
ERM with shared weights before quickly progressing to
300 ERM. This shows that the weights trained on the more
complex environment were very relevant to the simpler
environment.



MLP Coursework 2 (s1876926, s0908445, s1873615)

Figure 8. Comparison for Bipedal environment between baseline
and all layer transfer with 1st layer locked

In the second experiment, the BipedalWalkerHardcore en-
vironment had not improved as much as the BipedalWalker.
As seen in figure 9 the agent started learning at approxi-
mately -85. Though the BipedalWalkerHardcore showed
better performance with the shared weights than the base-
line through all the updates, the learning was still slow and
after 500 updates the performance was comparable to the
baseline. This performance is most likely caused by locking
the first layer of weights before training. This will restrict
the learning of the model and since it didn’t begin at a high
ERM, it struggled to increase it’s performance.

Figure 9. Comparison for Bipedal Hardcore environment between
baseline and all layer transfer with 1st layer locked

4.2.3. Weight Sharing: AllWeights

Finally, we tried transferring all of the weight from one
environment to another. For the first experiment, we shared
all the weights from BipedalWalkerHardcore to the Bipedal-
Walker environment. Next, we experimented sharing all the
weight of BipedalWalker to the BipedalWalkerHardcore
environment. The weight shared includes the input, two
layers and the output weights.

For the first experiment the results we got, as shown in
figure 10, showed us that the agent required far fewer up-
dates before achieving a similar maximum reward as the

baseline. As seen, the ERM started at approximately 180
ERM, compared to the baseline where it started at about
-110 ERM.

Figure 10. Comparison for Bipedal environment between baseline
and all weights shared transfer.

This demonstrated that weight sharing was very effect in
improving the initial performance and the agents policy can
achieve a reasonable ERM with zero shot learning. The ap-
proach also reaches a similar performance level to training
Bipedal Walker purely on its own but in a much faster time.
A drawback is the variance from update to update for the
transferred implementation, which is sporadic often achiev-
ing differences of greater than 50 after a few updates. This
is likely due to the learning rate meaning that the weights
of the network struggle to escape a local minimum that was
reached using the transferred weights.

In the second experiment, again we transferred the weights
of the input, two layers and the output from theBipedal
Walker to the Bipedal Walker Hardcore. The results of the
second experiment as seen in figure 11 shows that there was
a slight improvement. The hardcore agent started training
at about -80 ERM when transferring all the weight of the
layers.

Figure 11. Comparison for Bipedal Hardcore environment be-
tween baseline and all weights shared transfer.

This demonstrated that transferring from a less complex en-



MLP Coursework 2 (s1876926, s0908445, s1873615)

vironment to a more complex one can speed up its learning.
However, the rate of improvement is low once transferred
and after training both agents for 500 updates the ERM for
the hardcore baseline and the transferred approach are simi-
lar. This suggests that despite improving the initial ERM
score of the agent, the PPO model still struggles to learn on
the more complex Bipedal Walker Hardcore environment.

4.3. Multi-task training

Our previous experiments have shown us that though trans-
ferring weights can improve the initial performance on
more complex environments, the agents still struggled to
learn successful policies from this point. We therefore
wanted to discover if training both tasks simultaneously
could improve performance by aiding the agents learning
throughout the learning process. A similar method has been
shown to have promising results on contious control tasks
(Zhaoyang Yang, 2017).

Our agent was trained on Bipedal for one update and then
on Bipedal Hardcore for one update, alternating between
the two environments using the same weights.

Our results showed that the approach drastically improved
the Bipedal Hardcore rate of improvement and maximum
score.

Figure 12. Comparison for Bipedal environment between baseline
and multi-task. Showing only multi-task Bipedal from multi-task
data.

Figure 13. Comparison for Bipedal Hardcore environment be-
tween baseline and multi-task. Showing only multi-task Bipedal
Hardcore from multi-task data.

This indicates the easier environment aided in the harder en-
vironments development. This could be because the easier
environment acts as a stabiliser to learn an effective policy.
The alternation could also ensure the policy can generalise
to new instances, so when in the hardcore environment ran-
domly places obstacles and jumps to be overcome then the
agent is more resilient to changes.

5. Related work
Recent work on transfer learning in reinforcement learning
was different from one study to another. Some of the related
works were the following:

• Atkeson & Santamaria (1997) transfer between tasks
in which only the reward function can differ are again
considered. Their method successfully transfers a lo-
cally weighted regression model of the transition func-
tion, which is learned in a source task, by directly
applying it to a target task. Because their model en-
ables planning over the transition function and does
not account for the reward function, they show signifi-
cant improvement to the jump start and total reward,
as well as the asymptotic performance.

• Higgins et al. (2017) used an unsupervised vision ob-
jective to produce robust features for a policy, and
found that this policy was able to transfer to previously
unseen vision tasks in DeepMind7 Lab and MuJoCo 8.

• Mehta et al. (2008) assumes that the learner will train
on a sequence of tasks which are identical except for
different reward weights. The re- ward weights define
how much reward is assigned via a linear combination
of reward features. The authors provide the reward
features to the agent for a given set of tasks.

• Parisotto et al. (2015) enable transfer to a new task,
they first remove the final softmax layer of the AMN.

7https://deepmind.com/blog/open-sourcing-deepmind-lab/
8http://www.mujoco.org

https://deepmind.com/blog/open-sourcing-deepmind-lab/
http://www.mujoco.org


MLP Coursework 2 (s1876926, s0908445, s1873615)

Then used the weights of AMN as an instantiation for
a DQN that will be trained on the new target task.

• Ha (2018) have trained the BipedalWalker environ-
ments using PPO and TRPO and it work well when the
agent is presented with a well-designed dense reward
signal, while population-based methods offer compu-
tational advantages for sparse-reward problems.

We have transferred the knowledge by the weight sharing as
described in details in section 3.1 between the tasks which
is similar to what Atkeson & Santamaria (1997) and Mehta
et al. (2008) have done. The PPO was proven to be the best
to train the agent by Ha (2018) and that helped us to make
the decision in using this method for the experiments we
have done in section 4.

6. Conclusion
To sum up our report, we have used the BipedalWalker-v2
and BipedalWalkerHardcore-v2 environments of the Ope-
nAi gym and explained them in detail. Then, we introduced
the methodology of reinforcement learning, PPO and trans-
fer learning techniques that we used to train our agents.
Next, we started our experiments with the baselines fol-
lowed by the transfer learning experiments which were
using weight sharing and multi-task training techniques.

Our results showed us that though weight sharing could
increase the zero-shot performance of our agents, the more
complex environments still posed a challenge for our mod-
els. However, we then found that multi-task training greatly
improved our performance on the more complex environ-
ments, eventually achieving our highest reward on the
Bipedal Walker Hardcore environment.

This answers our question by showing that we can improve
the performance of reinforcement learning algorithms on
continuous control environments through the use of transfer
learning, especially multi-task learning.

7. Future work
For our future work, we would try applying the transfer
learning on Mujoco environments such as the Hands envi-
ronment which are based on the Shadow Dexterous Hand.
By introducing transfer learning to the best performing
models, we would aim to improve performance on hand
manipulation tasks as well as reducing the time and cost of
training.

Moreover, we would like to investigate combinations of
multi-task and weight sharing to investigate if further gains
could be made.

References
Atkeson, Christopher G and Santamaria, Juan Carlos. A

comparison of direct and model-based reinforcement
learning. In Proceedings of International Conference

on Robotics and Automation, volume 4, pp. 3557–3564.
IEEE, 1997.

Brockman, Greg, Cheung, Vicki, Pettersson, Ludwig,
Schneider, Jonas, Schulman, John, Tang, Jie, and
Zaremba, Wojciech. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

Catto, Erin. Box2d v2.3.0 user manual. 2013.

Ciosek, Kamil Andrzej and Whiteson, Shimon. Offer:
Off-environment reinforcement learning. In Thirty-First
AAAI Conference on Artificial Intelligence, 2017.

Dhariwal, P., Hesse C. Klimov O. Nichol A. Plappert M.
Radford A. Schulman J. Sidor S. and Wu, Y. Openai
baselines. GitHub, GitHub repository, 2017.

Ha, David. Reinforcement learning for improving agent
design. arXiv preprint arXiv:1810.03779, 2018.

Higgins, Irina, Pal, Arka, Rusu, Andrei, Matthey, Loic,
Burgess, Christopher, Pritzel, Alexander, Botvinick,
Matthew, Blundell, Charles, and Lerchner, Alexander.
Darla: Improving zero-shot transfer in reinforcement
learning. In Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70, pp. 1480–1490.
JMLR. org, 2017.

Hill, Ashley, Raffin, Antonin, Ernestus, Maximilian, Traore,
Rene, Dhariwal, Prafulla, Hesse, Christopher, Klimov,
Oleg, Nichol, Alex, Plappert, Matthias, Radford, Alec,
Schulman, John, Sidor, Szymon, and Wu, Yuhuai. Sta-
ble baselines. https://github.com/hill-a/stable-baselines,
2018.

Kaelbling, Leslie Pack, Littman, Michael L, and Moore,
Andrew W. Reinforcement learning: A survey. Journal
of artificial intelligence research, 4:237–285, 1996.

Kalashnikov, Dmitry, Irpan, Alex, Pastor, Peter, Ibarz, Ju-
lian, Herzog, Alexander, Jang, Eric, Quillen, Deirdre,
Holly, Ethan, Kalakrishnan, Mrinal, Vanhoucke, Vin-
cent, et al. Qt-opt: Scalable deep reinforcement learning
for vision-based robotic manipulation. arXiv preprint
arXiv:1806.10293, 2018.

Kingma, Diederik P and Ba, Jimmy. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Kojcev, Risto, Etxezarreta, Nora, Hernández, Alejandro,
and Mayoral, Víctor. Evaluation of deep reinforcement
learning methods for modular robots. arXiv preprint
arXiv:1802.02395, 2018.

Konidaris, George and Barto, Andrew. Autonomous shap-
ing: Knowledge transfer in reinforcement learning. In
Proceedings of the 23rd international conference on Ma-
chine learning, pp. 489–496. ACM, 2006.

https://github.com/hill-a/stable-baselines


MLP Coursework 2 (s1876926, s0908445, s1873615)

Mehta, Neville, Natarajan, Sriraam, Tadepalli, Prasad, and
Fern, Alan. Transfer in variable-reward hierarchical
reinforcement learning. Machine Learning, 73(3):289,
2008.

Parisotto, Emilio, Ba, Jimmy Lei, and Salakhutdinov, Rus-
lan. Actor-mimic: Deep multitask and transfer reinforce-
ment learning. arXiv preprint arXiv:1511.06342, 2015.

Schulman, John, Wolski, Filip, Dhariwal, Prafulla, Radford,
Alec, and Klimov, Oleg. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

Tirinzoni, Andrea, Sessa, Andrea, Pirotta, Matteo, and
Restelli, Marcello. Importance weighted transfer of
samples in reinforcement learning. arXiv preprint
arXiv:1805.10886, 2018.

Zhang, Amy, Ballas, Nicolas, and Pineau, Joelle. A dissec-
tion of overfitting and generalization in continuous rein-
forcement learning. arXiv preprint arXiv:1806.07937,
2018.

Zhang, Shangtong and Zaiane, Osmar R. Comparing deep
reinforcement learning and evolutionary methods in con-
tinuous control. arXiv preprint arXiv:1712.00006, 2017.

Zhaoyang Yang, Kathryn Merrick, Hussein Abbass Lian-
wen Jin. Multi-task deep reinforcement learning for
continuous action control. 2017.


