
Autoencoder Based

Recommender Systems for

SciStarter

Thomas James Cartwright

Master of Science

School of Informatics

University of Edinburgh

2019

Abstract

In this paper we researched autoencoder based recommender systems on the SciStarter

dataset. Our research covers content based recommenders, collaborative filtering rec-

ommenders using shallow and deep autoencoders, and finally hybrid recommenders.

Our results show that the SciStarter dataset is not ready to sufficiently train an autoen-

coder based recommender, since our experiments failed to match the benchmark. Our

experiments did however show comparable results on the MovieLens dataset there-

fore showing that, with additional data, the SciStarter dataset could be suitable for an

autoencoder based recommender systems in the future.

i

Acknowledgements

I would like to thank my supervisors: Dr. Kobi Gal and Dr. Avi Segal. They provided

guidance and feedback for the research from start to completion, as well as suggesting

improvements and correcting errors in the actual dissertation.

I would also like to thank Naama Dayan for providing the code with which to run

the benchmark algorithms.

Finally, I would like to thank my family, friends and partner. They inspire me with

their constant support and dedication to helping me achieve my goals.

ii

Table of Contents

1 Introduction 1
1.1 Context . 1

1.2 Motivation . 1

1.3 Objective of Project . 2

1.4 Results Achieved . 2

1.4.1 Benchmarks . 2

1.4.2 Content-Based Models . 3

1.4.3 Collaborative Filtering Models 3

1.4.4 Hybrid Recommender Models 3

1.5 Overview of the Paper . 4

1.5.1 Background . 4

1.5.2 Methodology . 4

1.5.3 Results and Discussion . 4

1.5.4 Conclusion . 4

2 Background 5
2.1 Scistarter . 5

2.2 Recommender Systems . 5

2.2.1 Content-Based Recommenders 5

2.2.2 Collaborative Filtering Recommenders 6

2.2.3 Hybrid Recommenders . 6

2.2.4 State-of-the-Art and Limitations 7

2.3 Autoencoders . 7

2.4 Datasets . 7

2.4.1 SciStarter User Interactions Dataset 7

2.4.2 SciStarter Project Content Dataset 8

2.4.3 MovieLens Dataset . 9

iii

2.5 Evaluation Metrics . 9

2.5.1 Metrics to Evaluate an Autoencoder 9

2.5.2 Metrics to Evaluate a Recommender System 10

2.6 Implementation and Code . 11

3 Methodology 12
3.1 Preprocessing our Data . 12

3.1.1 Preprocessing the Content Data 12

3.1.2 Preprocessing Collaborative Filtering Data 13

3.2 MoveLens Dataset . 15

3.3 Autoencoders . 15

3.3.1 Denoising Autoencoders . 15

3.3.2 Deep Autoencoders . 16

3.4 Benchmarks . 16

3.4.1 Popularity recommendation model 16

3.4.2 Collaborative Filtering . 16

3.5 Content based recommendations . 17

3.6 Autoencoder based Collaborative Filtering 17

3.7 Hybrid Recommenders . 18

3.7.1 Basic Hybrid Recommender 18

3.7.2 Putting Content Information into the Networks at the Start . . 19

3.7.3 Putting Content Information into the Networks at Every En-

coding Layer . 20

3.8 Finally . 20

4 Results and Discussion 22
4.1 Benchmark Results . 22

4.1.1 Popularity Based . 22

4.1.2 Collaborative Filtering: User-User 23

4.1.3 Collaborative Filtering: Item-Item 24

4.2 Content Based Recommendation . 24

4.2.1 Embedding the Input . 24

4.2.2 Recommendations . 25

4.3 Collaborative Filtering with Autoencoders 28

4.3.1 CDAE . 28

4.4 Deep Autoencoders and Recommenders 30

iv

4.4.1 Architectures . 30

4.4.2 Training the Autoencoder 31

4.4.3 Test the Recommender . 32

4.5 Hybrid Recommenders . 34

4.5.1 Basic Hybrid Recommender 34

4.5.2 Injecting Content Data into the First Layer 35

4.5.3 Injecting Content data into Every Layer 36

4.6 Findings and Parameter Influences 37

5 Conclusion 39
5.1 Summary of Findings . 39

5.2 Future work . 40

Bibliography 41

v

Chapter 1

Introduction

Recommender systems can be used to recommend products for a user to buy, films

for a user to watch or be combined with information retrieval algorithms to rank items

for a user’s query. Making good recommendations to users can increase their engage-

ment, reduce churn rates and increase revenue. Consequently, there has been extensive

research into recommender systems [7].

1.1 Context

In this paper we will discuss recommender systems built using autoencoders on con-

tent based and collaborative filtering data from the SciStarter dataset.

Scistarter is a portal where scientists and researchers can outsource tasks and projects

to members of the public. The tasks can be anything from identifying cancer cells to

bird spotting and can be completed online or offline. Currently, users will arrive on the

SciStarter website, find a project through the homepage or by searching, participate

with it and then leave the site. The aim is to build a recommender system that uses

a record of the users participations to recommend more relevant tasks or projects to a

user, therefore keeping them engaged.

1.2 Motivation

SciStarter has a user engagement issue with a high user attrition rate. The negative af-

fects of this are twofold. Firstly, researchers fail to get the engagement they require in

order to complete their research. Secondly, the quality of completed tasks is low since

1

Chapter 1. Introduction 2

users usually need some practice before they can complete tasks to a higher standard.

Since Scistarter projects involve important work in science around the world we there-

fore believe that any work that increases engagement on the portal is a worthy area of

research.

It has been proven that recommender systems can increase engagement [9] and we

therefore believe that a recommender system can solve SciStarter’s engagement issue.

Promising results have been shown with autoencoders on other datasets [23] and there-

fore we believe that this is a good direction with which to push the research. Finally,

we believe that the data that has already been collected by SciStarter on their user par-

ticipations lends itself well to building a recommender system and therefore this is a

reasonable next step in improving the SciStarter experience.

1.3 Objective of Project

Therefore the aim of our project is to build a reliable autoencoder based recommender

systems on the SciStarter dataset. We aim to experiment with both the project content

data and user participation data in order to accurately predict projects that a user will

engage with in the future.

1.4 Results Achieved

In this paper our aim was to create several different types of recommender systems and

successfully recommended relevant projects to users based on their previous interac-

tions on the site. We experimented with various recommender models and autoencoder

architectures that achieved promising results on the industry standard recommendation

datasets. However, we failed to beat the benchmark models and provide reliable rec-

ommendations for users on the SciStarter dataset.

1.4.1 Benchmarks

The first aim of our research was to establish a benchmark and we achieved this through

a standard popularity based model, user-to-user collaborative filtering and project-to-

project collaborative filtering. These models achieved comparable results to the litera-

ture and therefore provided a reasonable baseline.

Chapter 1. Introduction 3

1.4.2 Content-Based Models

We developed a number of content based models through embedding of the projects

content data using autoencoders. We expected our content based models to achieve

comparable, or even higher, results than our benchmarks since they use project sim-

ilarity to recommend users projects. However, these models achieved lower results

overall than the benchmarks. In Section 4.2 we address this in more detail and hypoth-

esize the reason for these results.

1.4.3 Collaborative Filtering Models

We experiment with various collaborative filtering models based on autencoders. Firstly,

we developed a denoising autoencoder in an attempt to generate recommendations by

encoding and then decoding our user participation data. The results from these exper-

iments were not promising and we address this in Section 4.3.

We then developed a deep autoencoder architecture with the hope that it would capture

patterns in the data and consequently make more accurate predictions. Though this

was our best performing model, it still failed to beat the baseline. We therefore address

this issue in Section 4.4.

Here we also evaluated our models on the MovieLens dataset to compare them to

the current state-of-the-art.

1.4.4 Hybrid Recommender Models

Finally, we believed that we could combine our results from the content-based and

collaborative filtering models in order to beat our baseline and generate accurate rec-

ommendations. However, these models performed similarly to the deep collaborative

filtering architectures and again failed to beat the baseline.

We therefore failed to achieve the aim of our project and have come to the conclusion

that autoencoders were not suitable for generating recommendations on the SciStarter

dataset. We give more information on this in our conclusion.

Chapter 1. Introduction 4

1.5 Overview of the Paper

In this section we detail the structure of the report, outlining the highlights from each

chapter.

1.5.1 Background

In this chapter we provide the necessary background on the Scistarter portal, Scistarter

dataset, a brief history recommender systems and autoencoders and an explanation of

our implementation of the recommender systems.

1.5.2 Methodology

The third chapter contains explanations of the evaluation metrics and models we devel-

oped. We begin by describing our data preprocessing before going on to describe the

implementation of our content-based models, denoising autoencoders, deep autoen-

coders and hybrid autoencoders.

1.5.3 Results and Discussion

The fourth chapter contains the results we achieved from running our experiments as

well as discussion about these results. We hypothesis why certain results were achieved

and what could be done to improve them in the future.

1.5.4 Conclusion

In this final chapter we conclude our findings, explore the limitations of our work and

suggest areas of future research.

Chapter 2

Background

In this paper we assume that the reader has a basic working knowledge of neural net-

works and machine learning techniques.

2.1 Scistarter

SciStarter is a portal containing thousands of projects that help forward scientific re-

search. They attract volunteers through a number of channels to take part in tasks.

However, SciStarter has an engagement problem since on average users who interact

with the site participate in 3-5 projects before churning.

Currently the only way for users to discover projects is by directly searching for them,

or finding them on the SciStarter homepage. Therefore a recommender system should

be a viable way of retaining users on the site, contributing to projects.

2.2 Recommender Systems

In this paper we implement various architectures for recommender systems on the

SciStarter dataset.

2.2.1 Content-Based Recommenders

Content based recommenders have been shown to achieve state-of-the-art results on

recommendation tasks [18]. The core concept of content based recommendation sys-

tems is that they use information about the items and users profiles to build similarity

5

Chapter 2. Background 6

models and recommend users a project that is most similar to their profile. A main

advantage of this method is that content based recommenders do not suffer from the

cold start problem and can therefore recommend new projects to users immediately.

They are also often more simple to implement than a collaborative filtering model and

therefore a good first step in developing a recommender system. However, they can

create filter bubbles where users are only recommended projects that are very similar

to previous projects, therefore not recommending more original content.

2.2.2 Collaborative Filtering Recommenders

Collaborative filtering methods are based on the assumption that if user A has inter-

acted with the same item as user B, then user A is more likely to interact with a different

item that user B has interacted with, as opposed to a random item. Collaborative filter-

ing then falls into two categories, user-user methods and item-item methods.

The item-item methods take the following steps,

• Build an Item-Item matrix that stores the relationships between items i.e. whether

a user has interact with both items

• Match the users previous items to the matrix in order to recommend any new

items

The user-user methods take the following steps,

• Look for users that have interacted with similar items to the current user

• Use the ratings from these similar users to recommend new items

2.2.3 Hybrid Recommenders

In an attempt to overcome the limitations of content based and collaborative filter-

ing recommenders, researchers have made several attempts at combining the two ap-

proaches into hybrid recommenders [6]. Hybrid recommenders don’t suffer from the

above problems and can also use all the available information to make recommenda-

tions to users. There are a number of ways to combine the collaborative filtering data

and the content data in a hybrid recommender and we will therefore research and im-

plement a number of these.

Chapter 2. Background 7

2.2.4 State-of-the-Art and Limitations

State-of-the-art recommenders have been shown to perform well on MovieLens and

Netflix dataset [30]. However, they can often struggle with sparse data or content

information that is not in a digestible form ([26], [24]).

2.3 Autoencoders

Autoencoders are neural networks that learn to reconstruct the input [23]. What makes

autoencoders special is that they contain at least one hidden layer with fewer variables

than the input or output layers, these are called the latent variables. This hidden layer

prevents the autoencoder from learning the identity function, therefore forcing it to

learn hidden patterns in the data in order to embed the input into a smaller number of

dimensions. Autoencoders can come in many forms, with a varying number of hidden

layers, latent variables, loss functions and optimisation techniques.

Autoencoders have been successfully applied in image classification tasks [27], text

classification tasks [31] and recommender systems. [25]. Autoencoders can also be

used to handle sparse data as they reduce the dimensionality of data. Therefore they

are a suitable candidate for application to the SciStarter dataset as they will be able

to extract hidden patterns in the data and therefore make recommendations based on a

users previous project interactions.

2.4 Datasets

2.4.1 SciStarter User Interactions Dataset

Alongside the project content information, SciStarter also provided us with a dataset

containing 42,159 participations. Each participation record is an interaction between a

profile and a project. Interactions can come in a number of forms and are distributed

as shown in Table 2.1

Chapter 2. Background 8

Figure 2.1: Autoencoder architecture [20]

Interaction Type Count

Classification / Transcription 12074

Data collection 23717

Joined the project 3020

Participated 3348

Table 2.1: SciStarter Participation Dataset

This dataset contains 896 users and 1781 projects.

2.4.2 SciStarter Project Content Dataset

For the SciStarter content dataset, the majority of our features take the form of plain

text. Projects are described using a number of fields including Title and Description

fields for example,

Nature’s Notebook

Chapter 2. Background 9

Pay attention to the plants and animals in your yard, and you can contribute to

scientific discovery! Observing life cycles of plants and animals with Nature’s

Notebook is easy and fun, and you will discover so much more about the plants and

animals you see everyday. Sign up to observe one or more species in your yard or

another place that you frequent. Use the Nature’s Notebook smartphone app to send

your observations directly to the National Phenology Database, or fill out paper

datasheets and submit them online.

2.4.3 MovieLens Dataset

In order to generate findings that build-on and are comparable to existing work in this

space we evaluated our models on the MovieLens-100k dataset [10] since this dataset

has been used in a number of papers where recommenders were being researched [7].

2.5 Evaluation Metrics

Though we are building recommender systems, there are two components to these

models that we need to measure. We need to measure both the accuracy of our autoen-

coders, as well as the success and accuracy of our recommenders.

2.5.1 Metrics to Evaluate an Autoencoder

To measure the success of our autoencoders we will experiment with a number of loss

functions. Firstly we will use Mean Absolute Error (MAE) [29],

MAE =
∑

n
i=1 |ei|

n
(2.1)

This is a common measurement used for evaluating neural networks and gives us

a measure of the loss our autoencoders achieve when attempting to reconstruct their

input.

However due to the sparsity of our data, the classes interacted and not interacted are

severely unbalanced. We therefore have to ensure that our metrics correctly weight

the results on both classes. Usually autoencoders are trained to reconstruct the input

and would therefore struggle to handle corrupt or missing data. Extensive experi-

mentation with loss functions [25] has focused on testing their ability to encourage

Chapter 2. Background 10

predictions as well as reconstruction in autoencoders. And so we also experimented

with a loss function provided by Strub et al. [25] which encourages the autoencoder to

make predictions by only evalutating the loss on known ratings and ignoring the errors

on unknown ratings.

2.5.2 Metrics to Evaluate a Recommender System

Precision and Recall
The most common metrics to evaluate the success of a recommender system are pre-

cision and recall [5]. Recall is the percentage of projects that the model correctly

predicted the user would interact with, out of all the projects the user has interacted

with. Precision is the percentage of projects that were correctly chosen by the model,

out of all the projects that were chosen by the model.

However, precision and recall do not take into account the ranking of a recommen-

dation (i.e. was a recommendation at the top or bottom of the recommendation list)

and can also not discriminate between the relevance of a rejected recommendation (a

recommendation that was not selected by the user). We believe recall is one of the most

important metrics for our recommenders because it demonstrates how many accepted

recommendations were in our top K projects.

Refined Precision
To provide a more complete evaluation of the success of our recommender systems

we also used refined precision [4]. This metric was created to award value to rejected

recommendations if these rejected recommendations are similar to an item that was

actually selected. To measure the similarity between projects we calculated the cosine

similarity of the TF-IDF vectors for each project. Refined Precision therefore gives us

more meaningful measurements on the performance of our recommender system as it

can give values to rejected recommendations that may be similar to accepted projects

(i.e. projects that the user went on to accept). The equation for refined precision is as

follows,

psim
u = pu +

∑i∈ru cu max j∈cu:t(u, j)>t(u,i)sim(i, j)
|ru|

(2.2)

where ru is the set of items recommender to user u, cu is the set of items clicked on,

t(u, i) is the time user u interacted with item i, pu is the precision for user u and sim(i, j)

is the similarity between items i and j [4].

Chapter 2. Background 11

Mean Average Precision

The final metric we used to measure the success of our models is Mean Average Pre-

cision (MAP) [28]. MAP considers the ranking of each recommendation and awards

higher scores to highly ranked, accepted recommendations. This is given by,

MAP =
∑

U
q=1 AveP(q)

U
(2.3)

where U is the number of users.

Finally, we further experimented with different numbers of recommendations in or-

der to find the optimal value that balances precision, recall, refined precision and mean

average precision.

2.6 Implementation and Code

The code for this project will be submitted independently. All the code for the project

was written in Python using a number of third party libraries.

• SkLearn was used for their implementation of TF-IDF and Cosine Similarity

• Keras was used to implement the autoencoders

• Gensim was used for their implementation of Doc2Vec

• Google Cloud Servers were used for training our autoencoders and testing our

recommenders

Chapter 3

Methodology

In the following section we will discuss our methodology for achieving the aim of

an accurate recommender on the SciStarter dataset. We will discuss preparing the

data, building our models, making recommendations to users and then evaluating our

recommendations.

3.1 Preprocessing our Data

The first step in training and testing our models is to preprocess the data. For the

SciStarter dataset we were provided with two data sources, the content data and the

participation data.

3.1.1 Preprocessing the Content Data

So that we can group projects in a meaningful way we want to make use of the infor-

mation rich Title and Description fields for each project. We chose these fields as they

are the most descriptive and varied of the SciStarter project data and should therefore

be our best resource for measuring project similarity.

However, these fields are plain text fields and so in order to group the projects we

decided to vectorise the text fields before then finding the similarities between these

vectors. There are several methods with which to vectorise plain text however the most

common are Term Frequency–Inverse Document Frequency (TF-IDF) and Doc2Vec.

TF-IDF, which is used in 83% of text-based recommender systems in digital libraries

12

Chapter 3. Methodology 13

[13], is a technique that reduces plain text into a vector representation. It is based on

the intuition that words that appear in a high number of documents in the corpus are

not useful for determining the similarity between documents [32]. For each word, the

TF-IDF value changes proportionally to the frequency of that word in a document, and

is inversely proportional to the number of documents in the corpus that contain the

word. And so in order to group our projects we first generated TF-IDF vectors for the

Title and Description fields of each project.

The next text vectorisation technique we used is known as Doc2Vec, which originated

from Word2Vec [15] where the semantic relationship between words is extracted us-

ing proximity of the word to a target word. Similar to the famous Word2Vec model,

Doc2Vec is a technique developed by [15] to represent large documents (of plain text)

as vectors. Doc2Vec goes a step further than TF-IDF in that it can learn the relation-

ships between words and understand the semantics of text and has therefore achieved

impressive results on text classification tasks [12]. We therefore also vectorised our

Title and Description fields using the Doc2Vec technique.

After representing the project’s text fields as vectors our next task was to measure

the similarity between these vectors in order to group them. To do this we used Cosine

Similarity [11] given by,

similarity =
A ·B
‖A‖‖B‖

(3.1)

Cosine similarity is commonly used to measure the similarity of vectors [11] and can

therefore be used to group projects together based on their similarity.

3.1.2 Preprocessing Collaborative Filtering Data

After we had prepared our content data our next step was to preprocess the participa-

tions data by creating 3 adjacency matrices for the train, validation and test sets. An

adjacency matrix is a matrix with # user columns and # project rows where a non-zero

value in a cell represents an interaction occurring between a user and a project.

To construct these matrices we firstly found all users that had interacted with at least 3

projects as this would ensure that there were interactions in the train and val/test set for

this user (which is required for training and evaluation of the model). We then grouped

these interactions by profile and picked the earliest 80% of each user’s interactions

Chapter 3. Methodology 14

and set them aside as our training set. We then randomly split the remaining 20% into

two datasets, the validation and test sets. We did this to maintain a form of time con-

sistency as it has been shown that splitting in a time consistent manner outperforms

a truly random split whilst also being a closer representation of the real world [14].

After doing this we found all profiles and projects with 0 interactions in the train set

and removed them from the train, test and validation sets. This left us with a a train,

test and validation set that contained user-project interactions, such as those shown in

Table 3.1.

Train Validation Test

Volunteer at The Marine

Mammal Center

The Genographic Project Perfect Pitch Test

Maine Amphibian Monitor-

ing Program

- Yellowhammer

Dialects

Citizens and Remote Sensing

Observational Network

- -

Snow Tweets - -

Table 3.1: Test Users Train, Validation and Test Projects

This preprocessing left us with a dataset with 896 users, 1021 projects with a total

of 6000 interactions, giving us a data sparsity of 99%. We can already see here that

our data sparsity is very high compared to standard datasets used in recommender

system research, that usually have a data sparsity of 95% [25]. The issue of sparsity

is a common problem in recommender system and can cause collaborative filtering

methods to degrade as they struggle to learn latent factors of the models and therefore

make accurate recommendations [8] . This issue can be addressed through the use of

content data and specialised loss function ([19] [22], [21]). The participations data

also has a skewed distribution where a small number of projects have the majority

of the participations. For example, the project ”The Twitter Earthquake Detection

Program” has 332 interactions, whereas the median amount of interactions per project

is 1. Compare this to the top profile, which has 17 interactions and we can see that

there is a skew in the data that could cause issues with our future models.

Chapter 3. Methodology 15

3.2 MoveLens Dataset

As discussed in Section 2.4.3, we also evaluated our models on the industry standard

MovieLens-100k dataset to compare it to models in the literature. The MovieLens-

100k dataset consists of 100,000 interactions between 1,700 movies and 1000 users.

The data sparsity on the dataset is 94.12% which is significantly lower than our SciS-

tarter dataset. This suggests that our SciStarter dataset might be too sparse for our

models to reliably beat the baseline, however the MovieLens dataset can be a reliable

measure of whether our models compare to those in the literature.

Other differences in the MovieLens dataset are that it uses explicit ratings (e.g. a

user has to actively rate a film) whereas in the SciStarter dataset the ”ratings” are im-

plicitly derived from a users interactions with a project. This can cause many issues

with our models, including a models ability to distinguish between a project that a user

has actively avoided interacting with, and a project a user has just not seen yet.

3.3 Autoencoders

The main aim of this project is to evaluate the use of autoencoders in recommender

systems and we therefore had to experiment with a number of different autoencoder

architectures.

3.3.1 Denoising Autoencoders

Denoising autoencoders are commonly used in recommendation models [30]. They

aim to stop the model from over learning the input data by corrupting it, therefore

helping the model generalise well to incomplete data [27].

They are usually shallow architectures, having one hidden layer and are known as de-

noising architectures because their fully connected layers are interspersed with dropout

layers. Dropout layers randomly set a small fraction (set by the dropout probability) of

the inputs values in a layer to be 0. This simulates missing values in the input data and

consequently prevents the models from overfitting on the training. This architecture

therefore enables better generalisation on the test set and better performance in the real

world [25].

Chapter 3. Methodology 16

3.3.2 Deep Autoencoders

Deep neural networks have been shown to achieve state-of-the-art results in various

tasks, such as image classification and speech recognition [17]. Deep autoencoders

have shown equally promising results and have therefore been applied to the recom-

mendation problem [14]. The motivation for using deep autoencoders is that they can

recognise more complex patterns and are therefore uniquely positioned to make better

recommendations from incomplete or corrupted data. As the autoencoders learn more

complex patterns in the data they can become more adept at predicting future projects

the user will interact with.

3.4 Benchmarks

Before building our autoencoder models we first had to establish our benchmark re-

sults.

3.4.1 Popularity recommendation model

The first benchmark model we built was the popularity based model. This model

simply recommends the most popular projects to every user regardless of their project

interaction history. We used this as it is the simplest model to create yet can give a

reliable benchmark.

3.4.2 Collaborative Filtering

The next benchmarks we implemented from previous research into the SciStarter dataset

were basic collaborative filtering models. Our item-item method uses SciStarter’s

project-to-project relationships. This model examines the projects the user has already

interacted with and then finds new projects that are most similar to these [22].

Our user-to-user relationships model calculates the similarity between users based on

the items they have interacted with. By looking at users that have already interacted

with a project and finding new users that have interacted with similar projects. It can

then make new recommendations to users by looking at the projects they are most sim-

ilar to.

Chapter 3. Methodology 17

We chose these benchmark models as they are simple to create whilst also providing a

representative performance which we can use to benchmark our results.

3.5 Content based recommendations

In the SciStarter dataset we have content information for the projects but were required

to generate our user profiles. We did this by concatenating the Title and Description

fields of all projects they interacted with in the train set. As discussed above we first

encode these fields using a text vectorisation technique and then use cosine similarity to

provide a similarity measure between projects. For example, using cosine similarity on

the TF-IDF of the projects description fields, the project ”North American Amphibian

Monitoring Program” is marked as most similar to,

Similar Projects

Spokane Area Amphibian Monitoring

FrogWatch USA

Frog Listening Network

As we can see from the project titles, the similarity model appears to be finding

relevant projects, in this case it is finding projects that are about amphibians.

To then recommend projects to users we calculate the similarity between a user’s pro-

file and all projects that they have yet to interact with and use these to generate a list

of recommendations, with the most similar being the highest recommended [3].

One problem with TF-IDF or Doc2Vec vectors is that they can have a large dimen-

sionality which causes computational inefficiencies. We therefore used denoising au-

toencoders to learn embeddings of the vectors, which we then used to calculate the

cosine similarity between a users profile and the projects they are yet to interact with.

The advantages of using the autoencoder embeddings is that they make the recom-

mender more computationally efficient while they also remove noise from the vectors

in an attempt to calculate similarity on the more fundamental aspects of the projects.

3.6 Autoencoder based Collaborative Filtering

After creating our content based models we then created autoencoder based collabo-

rative filtering models as these have been shown to perform extremely well in recom-

Chapter 3. Methodology 18

mendation tasks [14].

Aside from reducing the dimensionality of text vectors, autoencoders can also be used

to make recommendations using collaborative filtering data. The data is split as de-

scribed in Section 3.1.1 and the autoencoder is trained by inputting the training set and

then trying to reconstruct the same training set but with additional interactions from

the validation set. This technique was detailed by [14] and showed promising results

on the MovieLens dataset. To then make recommendations we can feed the train set

into our autoencoders and then review the output. From the output, we remove the

projects that were already done in the train set and then pick the projects that have the

highest value in the output vector. We can then recommend these projects to the user.

An example input adjacency matrix for one user would be,[
0 1 0 1 0 0

]
(3.2)

which shows that the user has interacted with project number 2 and 4. After this is fed

into the autoencoder it will produce a vector that couple look like so,[
0 1 0 1 0.3 0.8

]
(3.3)

As we can see, we now have two new predictions that we can use as recommendations.

In order to find the best autoencoder architecture for recommendations we experi-

mented with a number of different types, including shallow denoising autoencoders

Figure 3.1, deep architectures and hybrid architectures.

3.7 Hybrid Recommenders

After developing content-based and collaborative filtering models, we proceeded to

combine these models into hybrid recommenders since these have been shown to

achieve higher accuracy than their constituent parts.

3.7.1 Basic Hybrid Recommender

The simplest version of a hybrid recommender simply averages the predictions from

the collaborative filtering model and the content based model. The output from the

Chapter 3. Methodology 19

Figure 3.1: Denoising autoencoder architecture [30]

models gives each project a probability of being interacted with. These rankings can

then be normalised and averaged before the recommendations are then picked from

these combined rankings. For example, a profile might have a similarity of 0.7 with

project 1 from the content based system while the collaborative filtering autoencoder

generates a probability of 0.3 for project 1. We therefore average these two values

(0.7+ 0.3)/2 = 0.5 which gives us a probability that a user will select project 1. We

do this for every project, for every use to generate our list of recommendations.

The advantages of this model are that it is simple to implement and doesn’t require

any additional training. However this model is quite haphazard and can fail to cor-

rectly weight the rankings given by either model resulting in confident recommenda-

tions from one model being lost.

3.7.2 Putting Content Information into the Networks at the Start

Another method for creating hybrid recommenders is to feed content information into

the collaborative filtering autoencoders in the first hidden layer of the neural network.

This method has been tried by Strub et al. [25] and achieved state of the art results.

To insert content data into the first hidden layer we began by examining the results

from our content based methods and chose our best performing word vectorization

technique. We used this to embed our word vectors to be the same size as the first hid-

Chapter 3. Methodology 20

den layer of the autoencoder network. We then element-wise summed the collaborative

filtering adjacency matrix and the word vector together. From here the autoencoder was

trained as before [25]. For example,

c f =
[
0 1 0 1 0.3 0.8

]
(3.4)

content =
[
0.01 0.5 0.8 0.3 0.1 0

]
(3.5)

would result in the first layer,

content =
[
0.01 1.5 0.8 1.3 0.4 0.8

]
(3.6)

Using the output from the autoencoders we made our predictions using the same tech-

nique as for the collaborative filtering models (described in Section 3.6). The ad-

vantages of this model are that it considers both content and collaborative data and

therefore avoids the cold start problem.

3.7.3 Putting Content Information into the Networks at Every En-

coding Layer

Finally, there has been research into inserting content information into the models at

every layer [25]. The benefit of this is that side information can influence the rec-

ommendations at every learning step and guide the neural network into learning the

patterns beneath users project choices, alongside similarities in the projects.

To implement this model we first embedded the content information into a number

of small vectors whose size matched our models hidden layers (for example we embed

the content data to have size 1024, 512 etc.). From there we added the content infor-

mation to each hidden layer using the same process as described in Section 3.7.2 for

the first layer. An example architecture for our model can be seen in Figure 3.2. After

this structure had been implemented, it was trained and evaluated in the same manner

as described in Section 3.7.2.

3.8 Finally

And so using all the above techniques we aim to find a recommendation model that

performs well on the SciStarter dataset. This recommendation model should therefore

Chapter 3. Methodology 21

Figure 3.2: Autoencoder with content data inserted into every layer [25]

provide the SciStarter website with the ability to recommend projects to their users

and increase user engagement. We also aim to produce a model that is easily trained,

can be improved online and is computationally efficient for it to be hosted on the

SciStarter website. To find this model we performed the experiments described in

the next section.

Chapter 4

Results and Discussion

In order to find the best recommender model for the SciStarter dataset we had to train,

evaluate and improve the models described in our methodology section. Below we will

describe the experiments we ran and discuss their results. In all of our experiments we

quote the results for 1, 5 and 10 recommendations and we only recommend projects

that a user has not already interacted with.

4.1 Benchmark Results

The benchmark models described in our methodology section were picked since they

were simple to implement and have already been implemented and optimised on the

Scistarter dataset.

4.1.1 Popularity Based

We began by implementing a popularity based model. To find the most popular projects

we grouped all the interactions by project and then ranked the projects in descending

order by number of interactions. From this list we then recommended the most popular

projects to every user. The results for the following model, evaluated on our test set

are as follows,

Recommendations Precision Recall Refined Precision

1 0.0067 0.0059 0.2331

5 0.0163 0.0719 0.9248

Table 4.1: Popularity Recommender Results

22

Chapter 4. Results and Discussion 23

For our model the most popular projects can be seen in Table 4.2.

Recommended Projects

The Twitter Earthquake Detection Program

The Genographic Project

Volunteer at The Marine Mammal Center

The Smell Experience Project

Perfect Pitch Test

NASA Top Stars

What on Earth

Snow Tweets

Seward Park Hemlock Tree Monitoring

Zero Robotics Autonomous Space Capture Challenge

Table 4.2: Popularity Model Recommended Projects

For standard recommender systems on the MovieLens dataset the recall for 10 rec-

ommendations, 0.0922, is comparable [30]. We can also see that our refined precision

for the 5 and 10 recommendations is high compared to the literature however the pre-

cision of our model is low. We believe this is most likely due to the data sparsity

in the SciStarter dataset and the imbalanced distribution of project interactions. This

meaning that the majority of the interactions in the dataset are with the 5 most popu-

lar projects and so high recall can easily by achieved by always recommending these

projects.

4.1.2 Collaborative Filtering: User-User

The next benchmark we implemented was a collaborative filtering user-to-user model.

This model uses a neighborhood model size of 10 and achieved the following results

on the new SciStarter dataset,

Recommendations Precision Recall Refined Precision

1 0.0944 0.0811 0.1826

5 0.0688 0.2933 0.1586

Table 4.3: Collaborative Filtering User-User Recommender Results

As we can see, this model’s precision and recall are significantly better than the

popularity model. This demonstrates that personalising recommendations to each user

Chapter 4. Results and Discussion 24

can yield promising results. Intuitively this is expected as different users will have

different preferences in projects and any model that can learn these preferences should

perform well.

4.1.3 Collaborative Filtering: Item-Item

The final benchmark we implemented was a collaborative filtering item-to-item model

[22]. This model uses a neighborhood size of 10 and achieved the following results on

the Scistarter dataset.

Recommendations Precision Recall Refined Precision

1 0.0157 0.0148 0.0844

5 0.0215 0.1059 0.0878

Table 4.4: Collaborative Filtering Item-Item Recommender Results

As we can see, this shows us that the item-to-item models perform worse than

the user-to-user models. We believe this is due to the profile interactions being more

evenly distributed in the dataset compared to the project interactions. Due to a small

number of projects having the majority of the interactions, the item-to-item model will

struggle to learn user preferences as well as the user-to-user model.

Reviewing the performance of the above models demonstrates that they provide a rea-

sonable benchmark as their results are comparable to models from the literature that

were implemented on the MovieLens and Netflix datasets [14].

4.2 Content Based Recommendation

Now we have established our benchmarks we will proceed by implementing and train-

ing our content based recommender systems.

4.2.1 Embedding the Input

The first step in creating our content based recommender systems is to prepare our

input by vectorising the projects Description and Title fields. We create these TF-IDF

and Doc2Vec vectors using standard python libraries, SkLearn [2] and Gensim [1].

Chapter 4. Results and Discussion 25

0 5 10 15 20 25 30
Epoch

0.0

0.5

1.0

1.5

2.0

Lo
ss

Training Loss
Validation Loss

Figure 4.1: Training our autoencoder with embedding size 128, to reduce our TF-IDF

vectors of the description field

Once we have created our text vectors we then use our autoencoders to reduce the

vector’s dimensionality. This technique is used to learn hidden patterns in the data,

perform a form of clustering on the vectors and ultimately embed them into a smaller

space to improve computational efficiencies. Training our autoencoders with a learning

rate of 0.001 and dropout rate of 0.5 over 30 epochs yielded a loss of 0.0240 on the

train and validation sets, as shown in Figure 4.1. We can see that our training quickly

achieved a low loss, showing us that our autoencoders were able to embed and then

reconstruct our vectors successfully.

Once we have obtained these embeddings we can calculate the similarity between

the embeddings. For our TF-IDF vectors the max similarity is 0.9871, the lowest

cosine similarity is 0.0009 and the standard deviation was 0.0455. Here we can see

that the standard deviation is relatively low which could cause concern since we need

a large spread of similarity values in order to make more confident recommendations.

4.2.2 Recommendations

Once the similarities had been calculated we could then generate our recommendations

by ranking the projects by similarity for every user. This technique led to the following

results shown in Table 4.5, Table 4.6, Table 4.7 and Table 4.8.

Chapter 4. Results and Discussion 26

Embed Size K Precision Recall Refined Prec.

64

1 0.0012 0.0005 0.7215

5 0.0016 0.0029 0.7242

10 0.0015 0.005 0.726

128
1 0.0012 0.0004 0.6517

5 0.0019 0.0041 0.6555

10 0.0018 0.0083 0.6565

Table 4.5: Content Based TF-IDF on Description Recommender Results

Embed Size K Precision Recall Refined Prec.

64

1 0 0 0.3282

5 0.0009 0.0025 0.3356

10 0.0014 0.0059 0.3387

128

1 0 0 0.2501

5 0.0011 0.0030 0.2575

10 0.0014 0.0079 0.2609

Table 4.6: Content Based Doc2Vec on Description Recommender Results

Embed Size K Precision Recall Refined Prec.

64

1 0.0019 0.0004 0.8166

5 0.0022 0.0049 0.8194

10 0.0017 0.0083 0.8201

128

1 0.0006 0 0.6739

5 0.0014 0.0036 0.6760

10 0.0012 0.0058 0.6768

Table 4.7: Content Based TF-IDF on Title Recommender Results

Embed Size K Precision Recall Refined Prec.

64

1 0.0006 0 0.7623

5 0.0019 0.0041 0.7644

10 0.0016 0.0071 0.7654

128

1 0 0 0.6492

5 0.0011 0.0026 0.6555

10 0.0011 0.0056 0.6567

Table 4.8: Content Based Doc2Vec on Title Recommender Results

Chapter 4. Results and Discussion 27

We can see from the results that even our best performing model, which is our

TF-IDF vectorisation on the Description Field with embedding size 128, for precision

and recall we do not beat the benchmark results. This is most likely due to two fac-

tors. Firstly, the uneven distribution of interactions with projects (i.e. a small number

of projects having the majority of the interactions) means that our benchmark results

were artificially inflated. Secondly, the low standard deviation in our similarity values

means that our model could not be confident about it’s recommendations, therefore

causing the precision and recall to be low.

However, we can see that the refined precision is comparable to the popularity bench-

mark model. This is encouraging as it suggests that the users are selecting projects that

are similar to their profile, therefore meaning that a content based system could be an

important element of any recommender system on the SciStarter dataset.

In order to give an example of our recommender systems in action, we will show

their recommendations for the same user at each stage. We can see this user’s train,

val and test projects in Section 3.1.2. For each recommender we will compare the

recommended projects to the true projects (as shown in Table 4.9). As we can see

from our best content recommender (TF-IDF on the Description Field with embed-

ding size 128), the recommended projects, as shown in Table 4.10, are similar to the

true projects. The recommended projects seem to follow two themes which are wa-

ter/animals and health, one of which is very similar to the true projects. This is a

promising result as it shows that are recommender system is forming groups of similar

projects and making recommendations within them.

True Projects

The Genographic Project

Maine Amphibian Monitoring Program

Perfect Pitch Test

Citizens and Remote Sensing Observational Network

Yellowhammer Dialects

Table 4.9: Projects in test set for our test user

Chapter 4. Results and Discussion 28

Recommended Projects

Salida Trail Project Ditch Creek Water Quality Testing

Testing the waters in Negril, Jamaica

UK Ladybird Survey

Makers Local 256

The Microbiome and Oral Health

BioCurious

Track a Tree

Connecticut Turtle Atlas

Counter Culture Labs

$79 Dental Genome Kit

Table 4.10: Content Based with TF-IDF on Description and Embedding size 128, Rec-

ommended Projects

4.3 Collaborative Filtering with Autoencoders

4.3.1 CDAE

Due to the lack of performance with our content based method we next decided to

experiment with denoising autoencoders as they have been proven to perform well on

tasks with incomplete or corrupted data, such as the SciStarter dataset [30]. Using

MAE as our loss function, we experimented with various numbers of latent variables,

32, 64 and 128 with a learning rate of 0.001 and dropout rate of 0.5 [16] which yielded

the following results shown, with our best model with embedding size 128 achieving a

loss of 0.0746 in Figure 4.2

Again here we can see that our autoencoders are quickly achieving a low loss,

which suggests that our adjacency vectors can be successfully embedded into a smaller

state space and then reconstructed. To test the model we then fed our training data into

the autoencoder, took the reconstructed vector and picked the K largest items from the

vector giving us our recommendations, seen in Table 4.11.

Chapter 4. Results and Discussion 29

0 20 40 60 80 100
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

Training Loss
Validation Loss

Figure 4.2: Denoising autoencoder trained on the collaborative filtering data with em-

bedding size 128.

Embed Size K Precision Recall MAP RMSE

32

1 0.0116 0.0071 0.0249 0.0884

5 0.0081 0.0318 0.0249 0.0884

10 0.0047 0.0353 0.0249 0.0884

64

1 0.0116 0.0071 0.0234 0.0703

5 0.0052 0.0188 0.0234 0.0703

10 0.0044 0.0315 0.0234 0.0703

128
1 0.0116 0.0071 0.0238 0.0660

5 0.0058 0.0222 0.0238 0.0660

10 0.0047 0.0353 0.0238 0.0660

Table 4.11: Collaborative Filtering Denoising Autoencoder Recommender Results

The results we got from the recommenders show us that the denoising autoen-

coders are still not performing well on the SciStarter dataset. The results from the

autoencoders show that it has a significantly low validation loss however, the preci-

sion and recall from our results still fail to beat the baseline. We can also see that

using an embedding size of 128 performs marginally better which may suggest that

the embedding sizes 32 and 64 are too small to accurately capture patterns within the

data.

We can see from the recommended projects in Table 4.12 that our user are being

recommended projects in a seemingly random order. These results could be caused by

a number of issues. The data sparsity in our dataset likely means that the autoencoders

are not being provided enough examples with which to detect patterns and make reli-

able recommendations. Alongside this, we are also no longer considering the content

Chapter 4. Results and Discussion 30

data and therefore reducing the refined precision.

Recommended Projects

The Twitter Earthquake Detection Program

The Genographic Project

Habitat Steward

The Smell Experience Project

Shermans Creek Watershed Monitoring Program

Perfect Pitch Test

NASA Top Stars

What on Earth

Seward Park Hemlock Tree Monitoring

PhotosynQ

Table 4.12: Collaborative Filtering Denoising Autoencoder with Embedding Size 128

Recommended Projects

4.4 Deep Autoencoders and Recommenders

By observing that our denoising model with embedding size 128 performed best, we

consequently hypothesised that deeper architectures may achieve a higher performance

due to their ability to learn more complex patterns within the data. For our deep au-

toencoders we experimented with a number of different architectures.

4.4.1 Architectures

In order to experiment with deep autoencoder algorithms we tried the embedding struc-

tures shown in Table 4.13.

Name Embedding Structure Source

Deep1 32→ 10→ 32 Liu et. al. [16]

Deep2 128→ 128 Kuchaiev et. al. [14]

Deep3 1024→ 512→ 512→ 512→ 512→ 1024 Kuchaiev et. al. [14]

Deep4 500→ 250→ 500 Sedhain et. al. [23]

Table 4.13: Deep Autoencoder Architectures

Chapter 4. Results and Discussion 31

We hoped that increasing the hidden layers would improve the models ability to

learn the underlying patterns in the data and therefore gain the ability to accurately rec-

ommend new projects to users. Our motivation for this came from a number of papers

that had achieved state-of-the-art results using deep autoencoders ([16], [14], [23]).

Here we also introduced our specialised loss function to encourage the autoencoder to

create new recommendations alongside reconstructing the input as described in Section

2.5.1. [25].

4.4.2 Training the Autoencoder

We trained all of our autoencoders with a learning rate of 0.001 on the SciStarter

dataset and you can see the results achieved by the Deep3 architecture, achieving loss

of 0.0531, in Figure 4.3.

0 20 40 60 80 100
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

Training Loss
Validation Loss

Figure 4.3: Deep3 Architecture trained on the SciStarter Interactions Dataset

As we can see the new loss function performs better than our previous autoencoders

by achieving a lower loss. This is encouraging as it suggests that deeper autoencoders

are more capable of learning the hidden patterns in the data. We also trained with a

number of different dropout probabilities and found that p = 0.8 yielded the best rec-

ommendation results, shown in Table 4.14. This supports the claims made by Kuchaiev

et al. [14] and shows that higher dropout probabilities are better at simulating real world

recommendation scenarios. The next step is to evaluate how well our models perform

on our recommendation task.

Chapter 4. Results and Discussion 32

4.4.3 Test the Recommender

We ran our deep autoencoders on the SciStarter dataset and achieved the results shown

in Table 4.14.

Architecture K Precision Recall MAP RMSE

Deep1

1 0.0087 0.0064 0.0220 0.0407

5 0.006977 0.025145 0.021950 0.0407

10 0.0038 0.0281 0.0220 0.0407

Deep2

1 0.0029 0.0006 0.0165 0.0407

5 0.0041 0.0128 0.0165 0.0407

10 0.0035 0.0228 0.0165 0.0407

Deep3
1 0.0029 0.0006 0.0105 0.0407

5 0.0302 0.1328 0.0105 0.0407

10 0.0180 0.1545 0.0105 0.0407

Deep4

1 0 0 0.01391 0.0471

5 0.0017 0.0065 0.0139 0.0471

10 0.0020 0.0158 0.0139 0.0471

Table 4.14: Deep Recommender Results

As we can see the deep architectures perform better than the shallow denoising

autoencoders. This shows that the deeper architectures are better at capturing the hid-

den patterns in the data and the loss function encourages the autoencoders to make

predictions as well as reconstruct the data. This observation follows the results in the

literature detailing how deeper architectures are better at learning hidden patterns in

the data. We can see this by looking at some example recommendations in Table 4.15

where the project titles seem to be more similar to each other.

Chapter 4. Results and Discussion 33

Recommended Projects

The Genographic Project

Bay Area Ant Survey

Volunteer at The Marine Mammal Center

Habitat Steward

Global Warming Ambassador

Maine Amphibian Monitoring Program

The Smell Experience Project

Shermans Creek Watershed Monitoring Program

What on Earth

NatureWatch

Table 4.15: Deep Autoencoder Recommendations

However, though this model beat the denoising autoencoders it still fails to beat

the benchmarks. We believe this is due to the data sparsity and size of the dataset.

Deep architectures often need very large datasets in order to learn hidden patterns in

the dataset and it appears that the SciStarter dataset does not contain an adequate level

of examples.

As a means to verify our models performance we also ran our recommenders on the

MovieLens-100k dataset, achieving the results shown in Figure 4.4 and Table 4.16.

0 20 40 60 80 100
Epoch

0.2

0.4

0.6

0.8

1.0

Lo
ss

Training Loss
Validation Loss

Figure 4.4: Deep3 Architecture trained on the MovieLens Dataset

Architecture K Precision Recall MAP RMSE

Deep3

1 0.1771 0.0177 0.0675 0.08

5 0.1122 0.0561 0.0675 0.08

10 0.0857 0.0857 0.0675 0.08

Chapter 4. Results and Discussion 34

Table 4.16: Deep Recommender Results on MovieLens

As we can see from this, our results are comparable to the literature [30] and so

this justifies our belief that it is the Scistarter dataset’s quality and size that is causing

the lower performance values. In order to combat this we may be required to collect

more data, or artificially populate the data.

4.5 Hybrid Recommenders

Our final attempt at creating a viable recommender system for the SciStarter dataset is

a hybrid recommender system. We believe that by combining our best content based

model and our best collaborative filtering model, we can find a way to significantly

increase the performance of our recommender systems. We believe that the content

data will help guide the autoencoder to learn hidden patterns in the participation data

whilst also taking into account project similarity. To create our hybrid recommender

we will experiment with a number of different models.

4.5.1 Basic Hybrid Recommender

For our first hybrid recommender we averaged the results output from our content

based TF-IDF model with embedding size 128 (our best content model) and our Deep3

Architecture (our best collaborative filtering model). This model therefore required no

more training and could be evaluated immediately, giving the results shown in Table

4.17

Recommendations Precision Recall Refined Precision

1 0 0 0.1469

5 0.0074 0.037 0.332

10 0.0037 0.037 0.225

Table 4.17: Averaging Hybrid Recommender Results

We can see that this model performs worse than the Deep3 model but better than

the TF-IDF, embedding size 128 model. We can therefore see that though the deep

model has helped improve the TF-IDF models, the inclusion of content data has over-

all decreased the accuracy of the model. We believe this is due to the low standard

Chapter 4. Results and Discussion 35

deviation in our cosine similarity matrix meaning that the content data is not confident

enough on project similarities and is therefore confusing the results.

4.5.2 Injecting Content Data into the First Layer

The next hybrid recommender model involved injecting content data into the first hid-

den layer of the autoencoder as described in Section 3.7.2. We chose the Deep3 archi-

tecture because this is the architecture that performed best in our experiments. First

we had to train our autoencoder with a learning rate of 0.001 and dropout rate of 0.8

which achieved a loss of 0.0725 as shown in Figure 4.5.

0 20 40 60 80 100
Epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

Training Loss
Validation Loss

Figure 4.5: Hybrid Recommender inserting content data into the first layer

Next we had to test our autoencoder which achieved the results shown in Table

4.18.

K Precision Recall MAP RMSE Refined Prec.

1 0.0116 0.0071 0.0227 0.0506 0.2166

5 0.0076 0.0281 0.0244 0.0588 0.3084

10 0.0041 0.0310 0.0244 0.0588 0.3226

Table 4.18: Hybrid Recommender with First Layer Content Results

We can see that this model performed marginally better than the individual collab-

orative filtering approach in precision and recall. We believe this is because the content

data is helping the network learn patterns in the sparse data and therefore increasing its

performance in generating recommendations. We also believe that the inclusion of the

content data is guiding the network towards projects that are similar to the accepted

recommendations and therefore increasing the refined precision values.

Chapter 4. Results and Discussion 36

0 20 40 60 80 100
Epoch

0

5

10

15

20

25

Lo
ss

Training Loss
Validation Loss

Figure 4.6: Training our hybrid recommender with content data injected into every layer

4.5.3 Injecting Content data into Every Layer

The final model we developed injected content data into every layer of the autoencoder.

We believed this would perform well because the content data would nudge the autoen-

coder to select similar projects at every layer, therefore guiding the network towards

relevant choices at every learning step. First we had to train our autoencoder with a

learning rate of 0.001 and dropout rate of 0.8, achieving a loss of 0.0532 as shown in

Figure 4.6.

The autoencoder architecture was our best architecture from the collaborative filtering

results, Deep3. We also used the loss function that promoted the autoencoder to make

new predictions (as explained in Section 2.5.1) as this has been shown to increase the

performance of recommender systems.

We then ran our autoencoder to gain the results shown in Table 4.19.

Architecture K Precision Recall MAP RMSE Refined Prec.

Hyb3
1 0.0 0.0 0.010013 0.047 0.1210

5 0.0285 0.1249 0.0100 0.0470 0.7383

10 0.0180 0.1501 0.0100 0.0470 0.7825

Table 4.19: Hybrid Recommender with Content in Every Layer Results

We can also see the recommended projects in Table 4.20. These recommenda-

tions are similar to our previous models and achieve a recall of 0.4. We can see

however that the projects that we correctly predicted are ”The Genographic Project”

and ”Maine Amphibian Monitoring Program” which again shows that the Amphib-

Chapter 4. Results and Discussion 37

ian/Biology grouping is still present in our recommendations, showing that the content

information has provided some guidance to our recommendations.

Recommended Projects

The Genographic Project

Bay Area Ant Survey

Volunteer at The Marine Mammal Center

Habitat Steward

Global Warming Ambassador

Maine Amphibian Monitoring Program

NASA Top Stars

moo-Q

Mark My Bird

NatureWatch

Table 4.20: Hybrid Recommendations for Hyb3: the best hybrid architecture results

4.6 Findings and Parameter Influences

The results show us that our best performing mode was the Deep3 collaborative filter-

ing architecture with no content data. We believe this is because the content data was

not providing sufficient information to form groups of projects, therefore meaning that

the introduction of content data to the autoencoder caused the neural network to learn

suboptimal recommendations.

However, we can still see that none of our results have beaten the baseline. We believe

this is caused by three issues. Firstly, the data quality is not high enough (i.e. it is too

sparse) and so our autoencoders do not have sufficient information with which to learn

patterns in the data and form models of user behaviour. The second issue is that the

distribution of interactions among the projects is extremely uneven, likely meaning that

the popularity results are artificially higher than they would be if the interactions were

more evenly distributed. Finally, we believe that the dataset is not large enough for the

deeper architectures to learn patterns in the data with which to make recommendations.

In this section we also experimented with different values of dropout probabilities

which resulted in us finding that higher probabilities help the autoencoder’s recom-

Chapter 4. Results and Discussion 38

mendation recall. This is consistent with the literature and should therefore be the

strategy for future studies.

Finally, we can see that our models performed comparably on the MovieLens dataset

and so there is definitely some progress that can be made in these areas on industry

standard datasets.

Chapter 5

Conclusion

In our research we had the objective of creating an autoencoder based recommender

system for the SciStarter dataset. We will now briefly summarise our findings.

5.1 Summary of Findings

Our autoencoder based recommenders took the form of content based recommenders,

shallow autoencoder recommenders, deep autoencoder recommenders and hybrid rec-

ommenders. Our findings were ultimately that none of these approaches matched, or

beat, the benchmark of a standard user-user collaborative filtering method.

We found that our content based models appeared to form some groupings of projects

but failed to adequately discern between project groups, leading to confusion and in-

accurate recommendations.

Upon studying our collaborative filtering autoencoder based approaches we found that

the deeper the autoencoder architecture, the better the results. This supported our hy-

pothesis that in order to provide reliable recommendations, an autoencoder needs to

understand complex patterns hidden in the data and personalise it’s recommendations

to each users preferences.

Finally, our hybrid recommender results performed marginally worse than their con-

stituent parts showing us that the content data was causing the hybrid model to make

worse recommendations.

39

Chapter 5. Conclusion 40

We believe our models achieved these low results due to the sparsity and quality of

the SciStarter dataset.

5.2 Future work

Though we have shown that our models perform well on the MovieLens dataset, our

main aim of the project was not achieved. However, this does not mean that the SciS-

tarter dataset is not suitable for building a recommender system. Our research was

almost solely on autoencoder based models, and our benchmarks showed that simple

collaborative filtering methods could achieve good results. Therefore future work in

this area could be further researching other types of recommender systems, possibly

those that rely more on content data as this is more rich in the SciStarter dataset.

Finally if more data is collected for SciStarter, autoencoders (especially deep autoen-

coders) may perform significantly better. Research has also shown that any negative

implicit data can greatly increase accuracy. And so if data is collected on when a

user has seen a project but not interacted with it, this could greatly improve the per-

formance of a recommender system. Therefore, the research into autoencoder based

recommender systems on the SciStarter dataset should not be abandoned.

Bibliography

[1] Gensim.

[2] SciKit Learn.

[3] X Amatriain, A Jaimes, N Oliver, and JM Pujol. Data Mining Methods for Rec-

ommender Systems - Recommender Systems Handbook. Springer, 2011.

[4] Anonymous Author(s). Are All Rejected Recommendations Equally Bad? To-

wards Analysing Rejected Recommendations. Proceedings of UMAP, 2019.

[5] Michael Buckland and Fredric Gey. The Relationship between Recall and Preci-

sion. 1994.

[6] ROBIN BURKE. Hybrid Recommender Systems- Survey and Experiments. User

Modeling and User-Adapted Interaction, 2001.

[7] Tiago Cunhaa, Carlos Soaresa, and Andre C.P.L.F. de Carvalho. Metalearning

and Recommender Systems: A literature review and empirical study on the algo-

rithm selection problem for Collaborative Filtering. Elsevier, 2017.

[8] Xin Dong, Lei Yu, and Zhonghuo Wu. A Hybrid Collaborative Filtering Model

with Deep Structure for Recommender Systems. AAAI Conference on Artificial

Intelligence, 2017.

[9] Jill Freyne, Michal Jacovi, Ido Gu, and Werner Geyer. Increasing Engagement

through Early Recommender Intervention. RecSys’09, 2009.

[10] F. MAXWELL HARPER and JOSEPH A. KONSTAN. The MovieLens Datasets:

History and Context. 2015.

[11] Anna Huang. Similarity Measures for Text Document Clustering. 2007.

41

Bibliography 42

[12] Mark HUGHES, Irene LI, Spyros KOTOULAS, and Toyotaro SUZUMURA.

Medical Text Classification using Convolutional Neural Networks. IBM Research

Lab, 2017.

[13] Beel Joeran, Gipp Bela, Langer Stefan, and Breitinger Corinna. Research-paper

recommender systems : a literature survey. International Journal on Digital Li-

braries, 2016.

[14] Oleksii Kuchaiev and Boris Ginsburg. Training Deep AutoEncoders for Collab-

orative Filtering. 2017.

[15] Quoc Le and Tomas Mikolov. Distributed Representations of Sentences and Doc-

uments. International Conference on Machine Learning, 2014.

[16] Yu Liu, Shuai Wang, M. Shahrukh Khan, and Jieyu He. A Novel Deep Hybrid

Recommender System Based on Auto-encoder with Neural Collaborative Filter-

ing. BIG DATA MINING AND ANALYTICS, 2018.

[17] Weibo Liua, Zidong Wanga., Xiaohui Liua, Nianyin Zengb, Yurong Liuc, , and

Fuad E. Alsaadid. A Survey of Deep Neural Network Architectures and Their

Applications. Elsevier, 2017.

[18] Pasquale Lops, Marco de Gemmis, and Giovanni Semeraro. Content-based Rec-

ommender Systems - State of the Art and Trends. Springer Science+Business

Media, 2011.

[19] Alexandrin Popescu, Lyle H. Ungar, David M. Pennock, and Steve Lawrence.

Probabilistic Models for Unified Collaborative and Content-Based Recommen-

dation in Sparse-Data Environments. 2001.

[20] Christoph Quix and Jorge Bernardino. Data Management Technologies and Ap-

plications. Communications in Computer and Information Science, 2018.

[21] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Application of

Dimensionality Reduction in Recommender System - A Case Study. 2000.

[22] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-Based

Collaborative Filtering Recommendation Algorithms. WWW10, 2001.

[23] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. AutoRec:

Autoencoders Meet Collaborative Filtering. 2015.

Bibliography 43

[24] Meenakshi Sharma and Sandeep Mann. A Survey of Recommender Systems: Ap-

proaches and Limitations. International Journal of Innovations in Engineering

and Technology, 2013.

[25] Florian Strub, Jeremie Mary, and Romaric Gaudel. Hybrid Recommender System

based on Autoencoders. 2017.

[26] Xiaoyuan Su and Taghi M. Khoshgoftaar. A Survey of Collaborative Filtering

Techniques. Advances in Artificial Intelligence, 2009.

[27] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.

Extracting and Composing Robust Features with Denoising Autoencoders. 2008.

[28] Ellen M. Voorhees. The Philosophy of Information Retrieval Evaluation. CLEF,

2002.

[29] Cort J. Willmott and Kenji Matsuura. Advantages of the mean absolute error

(MAE) over the root mean square error (RMSE) in assessing average model per-

formance. CLIMATE RESEARCH, 2005.

[30] Yao Wu, Christopher DuBois, Alice X. Zheng, and Martin Ester. Collaborative

Denoising Auto-Encoders for Top-N Recommender Systems. WSDM, 2016.

[31] Weidi Xu, Haoze Sun, Chao Deng, and Ying Tan. Variational Autoencoder for

Semi-Supervised Text Classification. AAAI Conference on Artificial Intelligence,

2017.

[32] Wen Zhang, Taketoshi Yoshida, and Xijin Tang. A comparative study of TF-IDF,

LSI and multi-words for text classification. Elsevier, 2011.

